with lithium diethylamide might, like the corresponding reaction with *o*-bromodimethylaniline,² give some *m*-N,N-dimethyl-N',N'-diethylphenylenediamine.

Experimental

Reaction of p-Bromoanisole with Lithium Diethylamide.—The lithium diethylamide was prepared in ether by adding, in a nitrogen atmosphere, 0.2 mole of methyllithium to 0.23 mole of diethylamine. To the stirred, pale cream colored mixture which gave a negative color test I^3 was added 0.2 mole of p-bromoanisole in 50 cc. of ether. Reaction set in at once and the mixture gradually assumed a red color. After stirring and refluxing for twenty-four hours, the mixture was hydrolyzed by water. Fractionation of the dried ether extracts gave in addition to a recovery of 9.3 g. (25%) of p-bromoanisole, 12.2 g. of a mixture of m- and p-methoxydiethylanilines which is a 34% yield (or 45% based on the p-bromoanisole actually used up). The picrate, prepared in 95% ethanol, melted at 142.5-143.5°. An authentic specimen of the picrate of m-methoxydiethylaniline melted at 145-146°, and the mixed melting point was 143.5-144.5°.

Anal. Calcd. for $C_{17}H_{20}O_8N_4$: N, 13.7. Found: N, 13.7.

From a second experiment starting with 0.5 mole of p-bromoanisole, there were isolated as picrates both the m-methoxydiethylaniline, and a lesser amount of p-methoxydiethylaniline from the mother liquor of the picrate of m-methoxydiethylaniline. The m-isomer was again characterized by the picrate, the mixed melting point with an authentic specimen being 143.5–145°. The picrate of p-methoxydiethylaniline was obtained as yellow prisms melting at 122–123.5°. The picrate of an authentic specimen melted at 124–125°, and the mixed melting point was 123–124°. The p-methoxydiethylaniline⁴ was prepared from p-anisidine, ethyl iodide and sodium hydroxide.

Anal. Calcd. for $C_{17}H_{20}O_8N_4$: N, 13.7. Found: N, 13.8.

In view of the fact that the critical m-methoxydiethylaniline might have formed from o- and m-bromoanisoles, a special examination of the p-bromoanisole was made and the compound was shown to be pure.

- (2) Gilman, Kyle and Benkeser, ibid., 68, 142 (1946).
- (3) Gilman and Schulze, ibid., 47, 2002 (1925).
- (4) Davies, Bull. soc. chim., [5] 2, 295 (1935).

DEPARTMENT OF CHEMISTRY IOWA STATE COLLEGE Ames, IOWA

Received August 20, 1948

N-Phenacyltetrahydroisoquinoline

BY WILLIAM E. GOODE

During the course of an investigation of certain N-substituted tetrahydroisoquinolines, an apparent error in the melting point of N-phenacyltetrahydroisoquinoline, as reported by Wedekind and Oechslen,¹ was noted. They recorded a melting point of 100–101° for this compound as obtained from the reaction of phenacyl bromide with tetrahydroisoquinoline.

It now appears that when N-phenacylisoquinolinium bromide is reduced catalytically, N-phenacyltetrahydroisoquinoline, m. p. 75°, is obtained. In contrast, the melting point described by Wedekind and Oechslen is suggestive of the isomeric

(1) Wedekind and Oechslen, Ber., 36, 1161 (1903).

N-phenacyltetrahydroquinoline (needles, m. p. $101-103^{\circ}$, $^2 104^{\circ}$). Indeed, when pure tetrahydroisoquinoline and phenacyl bromide were caused to react under conditions similar to those employed by Wedekind and Oechslen, the product melted at 75–76° and was identical with N-phenacyltetrahydroisoquinoline as obtained by the reduction procedure.

Experimental

N-Phenacylisoquinolinium Bromide.—To 20.0 g. (0.1 mole) of phenacyl bromide in 100 ml. of anhydrous ether was added a solution of 13.0 g. (0.1 mole) of isoquinoline in 50 ml. of anhydrous ether. The solution was allowed to stand at room temperature for twenty-four hours and then filtered. The product was recrystallized from an absolute ethanol-petroleum ether mixture; yield, 28.0 g. (85%); m. p. 201-203°.

Anal. Caled. for $C_{17}H_{14}BrNO$: Br, 24.35. Found: Br, 24.28.

Reduction of N-Phenacylisoquinolinium Bromide.—Sixteen and four-tenths grams (0.05 mole) of N-phenacylisoquinolinium bromide was hydrogenated at 2 atm. and 60° over 0.2 g. of platinum oxide catalyst during one and onehalf hours. After removal of the catalyst, the solution was evaporated to dryness. The residue was dissolved in water and 5% sodium bicarbonate solution was added. The yellow solid which separated was extracted with ether; the ether was evaporated, and the residue was recrystallized from 80% ethanol as faint yellow plates; yield, 7.8 g. (62%); m. p. 75°.

Anal. Calcd. for $C_{17}H_{17}NO$: C, 81.27; H, 6.77. Found: C, 81.30; H, 6.94.

N-Phenacyltetrahydroisoquinoline.—To 9.9 g. (0.05 mole) of phenacyl bromide was added 13.3 g. (0.1 mole) of tetrahydroisoquinoline. The mixture was cooled in running water to keep the temperature in the range $70-80^{\circ}$. The solid residue was extracted with two 100-ml. portions of boiling ether, and the ether was evaporated on the steam-cone. The product recrystallized from 80% ethanol as faint yellow plates; yield, 8.2 g. (66%); m. p. 73-74°. Further recrystallization raised the melting point to 75-76°. This product did not depress the melting point of the N-phenacyltetrahydroisoquinoline as obtained by the reduction procedure.

(2) Meisenheimer, Angerman, Finn and Vieweg, *ibid.*, 57, 1744 (1924).

(3) Kunckell, ibid., 30, 576 (1897).

CHEMISTRY LABORATORIES NORTH TEXAS STATE COLLEGE DENTON, TEXAS, AND NOVES CHEMICAL LABORATORY UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

RECEIVED JULY 17, 1948

Derivatives of Nitrodesoxyinositols

BY BEAT ISELIN AND HERMANN O. L. FISCHER

The synthesis of nitrodesoxyinositols by cyclization of 6-nitrodesoxyaldohexoses has been reported from this Laboratory.¹ Further attempts have been made since to convert these compounds to the corresponding inososes by means of the Nef reaction.² This method was used successfully for the removal of the nitro substituent in nitrodes-

(1) J. M. Grosheintz and H. O. L. Fischer, THIS JOURNAL, 70. 1479 (1948).

(2) J. U. Nef, Ann., 280, 263 (1894).